How Innovative Cities Benefit from Mobility IoT Data

We are entering a new transportation age, one in which new modes; from scooters to ride hailing apps to autonomous vehicles, are disrupting transportation traditions. the Internet of Things (IoT) is gradually connecting everyone to everything, and new data sets are emerging too fast to be properly analyzed or effectively integrated with other data.

To understand how this transition is unfolding — and how it affects mobility issues like congestion, climate change, public safety and social equity — we recently talked with StreetLight Data’s VP of marketing Martin Morzynski and western region director Sal Akhter. 

StreetLight was the first to provide a cloud-based software platform for transportation analytics, and works regularly with cities, departments of transportation, and engineering firms on the cutting edge of transportation. Sal and Martin answered our questions about what those organizations are doing to better manage modern mobility. 

What is the biggest mobility challenge that municipalities are struggling with?

Martin: Mobility is connected to so many important quality of life topics: congestion, public safety, climate change/VMT greenhouse gasses, social equity — they’re all affected by transportation.

What we see in the industry is that agencies and public sector firms are trying to make sense of the high-tech direction in which mobility is heading. For example, how does a city partner with Transportation Network Companies (TNCs), like Lyft and Uber? How can cities deploy the Internet of Things (IoT) to support infrastructure? How can they use data to improve transit for under-served segments of the community?

Sal: I work with cities that have invested heavily in cutting-edge infrastructure, like IoT sensors, but they’re having trouble justifying that expense with subsequent impact. Planners and other transportation experts are using data to look closely at all the interrelated issues that fall under mobility, but they are struggling to get a holistic view of all of the factors, in a way that’s linked and responsive. 

Why aren’t these high-tech IoT sensors they giving us the holistic view of mobility that we need?

Sal: Sensors are an effective way to gather analytics, but people are still collecting data in very siloed ways. For example: bike/pedestrian sensors, vehicle data, and safety sensor data are each stored different databases. 

It can get expensive quickly, paying for multiple data streams, and those disparate sources are hard to bridge. The cities that are moving forward most effectively are finding ways to relate various data flows to each other. That creates efficiencies in costs and in workstreams.

 

So, this shift is less about the actual technology and more about managing technology?

Martin: It is. Shifting to a high-tech mobility future is challenging transportation experts to think in a different way. It used to be the car was the common thread for all this data, but we are now making room for so many new modes, and new ways to gather analytics for those modes. 

We’re at the point where we have plenty of data, now it’s time to start understanding these issues and how they interact. Mobility experts have created measurement tools, but not as much thought about how they all come together for the bigger picture. 

Big Data is helping integrate these data flows, making sense of disparate sensors and creating a single-source “dashboard” that gives cities a whole new level of insight into the modes on their streets.

 

Can you give us an example of this holistic data approach in practice?

Sal: Sure, we recently worked with the Bay Area Air Quality Management District in San Francisco. They used our transportation analytics platform to run some studies for the Port of Oakland. 

The City of Oakland was very concerned about public health and safety, with trucks coming out of the port and driving through town. In this case, “public safety” encompasses private and commercial vehicle collisions, bike and pedestrian travel, air quality, and potentially even social equity issues for truck routing through residential areas. You need a holistic view to study the issue thoroughly. 

Oakland’s planners were able to use trip analytics from a single platform to study all of these issues, even using the analytics to create air quality models. 

The segment analysis revealed which streets are supporting the most trips, and along which routes. We could separate commercial traffic to see that port trucks from Oakland are responsible for 18% of all vehicle miles traveled (VMT), which contributes the most to greenhouse gas. Then we explored the safety layer by going through city streets and looking at potential pedestrian and bicycle conflicts by analyzing those trips.

Finally, for a city like Oakland that has a history of social equity issues, the analytics include demographic data that helps planners understand the impact traffic has on historically under-served and under-reported areas and residents. 

What’s ahead for cities that are already at this level of holistic analytics?

Martin: I think what you’re going to see is that municipalities with access to holistic analytics will start to get really powerful insights about mobility that they didn’t even know were possible. Better managing the data can free up resources. Access to more resources allows people to go deeper and do more.

In fact, we expect this type of holistic thinking to expand beyond transportation, connecting mobility to the entire fabric of a community. Commuting, air quality, safety, energy use, and social equity are all quality of life issues that mobility touches. So, better mobility analytics can ultimately mean better quality of life for everyone.

Image: Pixabay

Source: Meeting of the Minds

This article is culled from daily press coverage from around the world. It is posted on the Urban Gateway by way of keeping all users informed about matters of interest. The opinion expressed in this article is that of the author and in no way reflects the opinion of UN-Habitat